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ABSTRACT

Fog and other poor visibility conditions hamper the visibility of runway surfaces and any obstacles present on
the runway, potentially creating a situation where a pilot may not be able to safely land the aircraft. Assisting
the pilot to land the aircraft safely in such conditions is an active area of research. We are investigating a method
that combines non-linear image enhancement with classification of runway edges to detect objects on the runway.
The image is segmented into runaway and non-runway regions, and objects that are found in the runway regions
are deemed to constitute potential hazards. For runway edge classification, we make use of the long, continuous
edges in the image stream. This paper describes a new method for edge-detection that is robust to the imaging
conditions under which we are acquiring the imagery. This edge-detection method extracts edges using a locally
adaptive threshold for the detection. The proposed algorithm is evaluated qualitatively and quantitatively on
different types of images, especially acquired under poor visibility conditions. The performance of the algorithm
is evaluated as a function of the signal-to-noise ratio and as a function of the visibility index. Additionally the
results of our new algorithm are compared with other, more conventional edge detectors.

Keywords: I mage enhancement, Multi-scale Retinex (MSR), edge detection, edge thinning, scaling, hysteresis

thresholding, line detection, blob removal, Hough transform.

1. INTRODUCTION

For past many years, different techniques have been proposed for assisting a pilot to land an aircraft safely on a
wide range of airports in low visibility conditions. Examples of these technologies include, but are not limited to,
millimeter wave (MMW) cameras used for producing visual-like radiometric images at real-time frame rates,1

systems operating in the microwave region of the electromagnetic (EM) spectrum, and the infrared region of
the EM spectrum.2 Fog and low visibility conditions have hampered aviation since its inception. Low visibility
conditions refer to any weather conditions such as rain, fog, and snow, other phenomenon such as haze, smoke
or dust, and the lighting conditions that exist at dawn and dusk. Dense fog conditions, in particular, may
present a situation that prevents the pilot from landing the aircraft safely. Fog-related accidents like the one
that occurred at the Atlanta Hartsfield-Jackson International Airport on January 13th, 2005 during landing
where the plane ran off the runway and became stuck in the mud [citation], along with canceled take-offs and
landings have also increased. These accidents and cancellations/delays have a significant economic impact on
airlines and general aviation. Pilots should be able to see the runway even when the weather conditions are
conducive to deteriorating or rapidly changing. Surveillance is an important function that provides a detailed
picture of all the ground traffic (aircraft and vehicles) on the runways. Typically, an airport is characterized by
its runways that are of particular length and width. These runways form an elongated rectangle shape in aerial
imagery that distinguishes it from its surroundings. This distinctive shape is very useful in discriminating the
runway from its surroundings.

The problem of particular interest to our research is the detection of unexpected objects on a runway,
especially in poor visibility. While sensor suites composed of infrared, visible and millimeter wave radar provide
additional imagery to the pilot, they typically do not attempt to extract information from the imagery. This
presents the pilot with yet-another-task that needs to be performed in order to fly the aircraft safely. We provide
an automated technique that applies novel image processing and analysis techniques to the imagery from the
sensor suite to detect the presence of some unexpected object that may present a hazard to the aircrafts during
landing or take-offs. The process consists of three parts:
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1. runway edge determination to segment the runway from its surrounds;

2. detection of stationary or moving objects on the runway; and,

3. determination of whether the object on the runway represents a hazard.

In this paper, we concentrate primarily on the first task, i.e., determination of runway edges in the image frame.

Typically the sensor-pod is fixed on the nose of the aircraft, though the NASA 757 Aries aircraft had it
mounted on the belly of the aircraft, just below the nose cone. When the aircraft is landing or taking-off, the
flight axis is parallel to the body axis. This provides a good frame of reference for the geometrical operations
that are needed to find the runway edges. It is considerably easier to discover runway edges at some airports
than at others. Figure 1 shows an example approach. In this instance, the characteristics of runway are very
different from the characteristics of its surrounds. The runway itself is gray with greenery around it, and two
white lines mark the boundaries of the runway. Additionally, a broken white line marks the center of the
runway. These two borders eventually become two intersecting lines in the image. The area above the horizon
is classified as sky and the rest as ground as shown in Figure 1. So the area of interest is in-between the white
boundaries and the intersection of the edge boundaries. If we can obtain these pieces of information from the
imagery in an automatic manner, then we can make the task of landing an aircraft in poor visibility conditions
considerably easier.

Figure 1: Runway characteristics.

Before performing any edge operation on the image it is useful to enhance it so as to reduce the impact of
lighting conditions under which it was acquired. We use the non-linear, context dependent Multiscale Retinex
(MSR) to perform the image enhancement (see Section 2 for a discussion of the MSR). Since the MSR does not
distinguish between signal and noise, it has a tendency to amplify the noise even as it enhances the signal. It is,
therefore, at times necessary to apply a noise-reduction filter such as the Gaussian low-pass filter to reduce the
impact of noise amplification. This step is followed by finding the edges in the image which are then thinned
to make them 1-pixel wide. Different thinning techniques are used for increasing the possibility of detection.3–5

Thinning helps to maintain the single pixel wide edges before the final stage when thresholding is performed
using hysteresis thresholding. Hysteresis thresholding has some local adaptation to image content. Additional
noise reduction is performed on the edge-images to remove any unconnected edges that are smaller than a
certain size. These isolated edges appear as “blobs” on the runway.6 These unwanted elements are eliminated
from the image by using masks of different sizes. Four filters are used for removing these isolated edges from
the edge image, making the image more useful for automated interpretation.



Figure 2: MSR enhancement: (left) original image; (right) enhanced image.

2. APPROACH

2.1. Image Enhancement

There is a need for enhancing the image before performing any operation on it as the images acquired from
UAV have varying amount of illumination depending on whether it is day or night. The image should be made
ineffective of the lighting conditions. Multi-Scale Retinex (MSR) is a technique which reduces the impact of
lighting conditions by making it up to a certain extent ineffective of the lighting changes which plays a major
role in analyzing the image in poor visibility conditions, to improve the quality of scene image and extract better
features in complex environment where the images undergo large lighting changes.7, 8 It simultaneously provides
dynamic range compression, color constancy and color rendition. The enhanced image becomes independent of
lighting changes under poor visibility conditions. The MSR is specified as:

Ri(x1, x2) =
κ

∑

k=0

wk (log (Ii(x1, x2)) − log (Ii(x1, x2) ∗ Fk(x1, x2))) , i = 1, . . . , N, (1)

where Ii is the ith spectral band of the N -band input image, Ri is the corresponding is the Retinex output, ‘∗’
represents the (circular) convolution operator, F is a (Gaussian) surround function, and κ is the number of the
scales. The Gaussian surround function is given by:

Fk(x1, x2) = akGk(x1, x2) (2)

Gk(x1, x2) = exp
(

−(x2
1 + x2

2)/σ2
k

)

(3)

ak =
∑

x1,x2

Gk(x1, x2), (4)

where the σk values need to be set according to the amount of enhancement required. Figure 2 (left) shows an
original image of a road acquired under fairly heavy fog. The fog hampers the overall visibility of objects on the
road. Figure 2 (right) shows the MSR enhanced version of the image. The MSR eliminates all of the fog-blur
from the image.

2.2. Edge detection

After enhancement, the image needs to be analyzed to find any hazardous objects on the runway path. Edge
detection is used for this for two reasons:

1. Edge detection has the advantage of reducing the amount of data to be analyzed, eliminating unwanted
information from the image.



2. Edge detection aids in eliminating noise from the image.

In this paper we propose a new edge detection method to overcome the limitations of conventional methods. The
edge detector initially performs smoothing on the image by convolving the image with the Gaussian smoothing
operator. Gaussian smoothing operator is a circularly symmetric (or isotropic) mask, such that any cross-section
through its center yields a weight profile that has the form of a Gaussian or normal curve. Its kernel is in the
form of a Gaussian hump. It removes small-scale texture and noise as effectively as possible for a given spatial
extent in the image. Next, the edge magnitude of a pixel is computed by taking the difference between the
mean intensities of two groups of pixels in the regional difference matrix, D, given by:
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All dij , i, j = 1, . . . , 3 with intensity values above a (pre-defined) threshold belong to the first group, Ga, and all
others belong to the second, Gb. The center pixel in the 3 × 3 neighborhood , Ix1,x2

, is assigned a value equal
to the difference of the means of the two groups:
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where Na, Nb are the number of elements in Ga and Gb respectively, and M(x1, x2) represents the edge magni-
tude of a pixel at (x1, x2). Figure 3 (left) shows an example of applying this method to a test image.

Figure 3: (left) Gradient image; (right) Edge thinned image.

2.3. Edge thinning

The gradient image produced by the method described in Section 2.2 produces edges that are more than one
pixel thick. These edges need to be reduced in thickness for computational efficiency. We perform an edge-
thinning operation that reduces edges to unit thickness while maintaining the original connectivity of edges.
Edge thinning is performed by computing the gradient magnitude in four directions—horizontal (x1), vertical
(x2), 45◦ and 135◦. The four gradients are computed using:

Ix1
=

√

(I(x1, x2) − I(x1, x2 − 1))
2

+ (I(x1, x2) − I(x1, x2 + 1))
2

(7)

Ix2
=

√

(I(x1, x2) − I(x1 − 1, x2))
2

+ (I(x1, x2) − I(x1 + 1, x2))
2

(8)



I45◦ =

√

(I(x1, x2) − I(x1 − 1, x2 + 1))
2

+ (I(x1, x2) − I(x1 + 1, x2 − 1))
2

(9)

I135◦ =

√

(I(x1, x2) − I(x1 − 1, x2 − 1))
2

+ (I(x1, x2) − I(x1 + 1, x2 + 1))
2

(10)

Edges in the edge-image are made one pixel thick by considering a 3× 3 neighboring region around an edge
pixel. If any of the following conditions are met, then the pixel is considered to be an edge-pixel, otherwise it
is set to zero:

I(x1, x2) ≥ max
(k1,k2)

I(x1 + k1, x2 + k2), k1, k2 ∈ {−1, 0,+1},

I(x1, x2) ≥ max
(k1,k2)

I(x1 + k1, x2 + k2), k1 = 0, k2 ∈ {−1, 0,+1} ∧ Ix1
(x1, x2) ≥ Ix2

(x1, x2)

I(x1, x2) ≥ max
(k1,k2)

I(x1 + k1, x2 + k2), k1 ∈ {−1, 0,+1}, k2 = 0 ∧ Ix2
(x1, x2) ≥ Ix1

(x1, x2) (11)

I(x1, x2) ≥ max
(k1,k2)

I(x1 + k1, x2 + k2), (k1, k2) ∈ {(−1,−1), (0, 0), (+1,+1)} ∧ I45◦(x1, x2) ≥ I135◦(x1, x2)

I(x1, x2) ≥ max
(k1,k2)

I(x1 + k1, x2 + k2), (k1, k2) ∈ {(+1,+1), (0, 0), (−1,−1)} ∧ I135◦(x1, x2) ≥ I45◦(x1, x2).

Then after performing thinning scaling is performed on the image since the image intensities produced after
thinning are so small that they need to be normalized before performing any thresholding operation on them.
Figure 3 (right) shows the result of performing thinning on the image gradient. The resultant image typically
has very low intensity values which need to be normalized for spreading the pixel intensities over the entire
range of intensities. An “autolevels” process is used to scale the intensity values to cover the full 8-bit display
gamut.

2.4. Thresholding

Thresholding is performed on the scaled image using Hysteresis thresholding which results in a binary image.
Two threshold values are specified: an upper threshold, τu, and a lower threshold, τl.

I(x1, x2) =











255, I(x1, x2) > τu

0, I(x1, x2) < τl

255, τl < I(x1, x2) < τu ∧ max
(k1,k2) 6=(0,0)

I(x1 + k1, x2 + k2) > τu, k1, k2 ∈ {−1, 0,+1}
(12)

The upper threshold, τu is used to find strong edges and the lower threshold, τl is used to find weak edges.
Hysteresis thresholding simultaneously attempts to eliminate weak edge points that are caused by noise while
filling in gaps between strong edge points where only weak edge response is detected. In order to automate the
whole process, thresholding is done by setting τu = 25 and τl = 12— approximately half of τu. The threshold
values are always changed using a ratio of 2:1 which is considered standard for this algorithm. Various ratios
and values were tried and an optimum value was found which suited all kind of images. Figure 4 (right) shows
the effect of thresholding the scaled image in the ratio (2:1), with τu = 25 and τl = 12.

2.5. Removal of Isolated edges

After edge-detection, thinning, and hysteresis thresholding, there are still isolated edges in the image that can
be removed by applying a series of blob-removal filters. These edges should be removed from the image because
they do not provide any useful information in detection runway edges or hazards on the runway. Extracting edges
is essential for identifying or interpreting meaningful physical objects from images when analyzing an image, an
appropriate balance between too many and too few edges is difficult to find. Under-detection which is detection
of too few edges will lead to inadequate information without any strong evidence about the edges whereas
over-detection will give too many edges which cause confusion and extra hypotheses and extra computation.
So these extra data values which can be classified as line-blobs. These blobs are points or regions in the image
that are either brighter or darker than the surrounding.



Figure 4. (left) Hysteresis thresholding is applied to the scaled image with Upper and Lower thresholds values 25 and
12; (right) After removal of isolated edges from the image.

The first filter that we use for blob-removal considers a 7× 7 region in the edge-image. We assume that the
blob is contained in the central 3 region within this 7×7 region. So an easy test to remove blobs is to check the
number of zeros, Z7,3, in the 7 × 7 region excluding the central 3 × 3 region. If Z7,3 > τ7,3 then all the values
within the 3× 3 central region are set to zero. Here, τ7,3 is a predefined threshold. Typical values of τ7,3 range
between 38–40. This process does not affect the strong (continuous) edges but eliminates regions that have
isolated edge pixels. Figure 5 (left) shows the 7× 7 region: the central blob profile is marked by the symbol X.

After the application of the first filter, there are still isolated edge-pixels that have not been completely
eliminated. A second filter of size 11 × 11 is applied to the output of the first filter. This filter eliminates
slightly larger isolated edges or blobs. A similar process as that described for the first filter is applied, except
the comparison in this case is: Z11,5 > τ11,5, where Z11,5 is the number of zeros in the 11× 11 region excluding
the central 5×5 region, and τ11,5 a predetermined threshold value. When this comparison is valid, all the pixels
inside the 5 × 5 region are set to zero. Typical values of τ11,5 range between 90–96. Figure 5 (right) shows the
11 × 11 mask.

X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X

X X X X X

Figure 5: (left) 7× 7 region with a 3× 3 blob region; (right) 11× 11 region with a 5× 5 blob region.

In addition to the square regions, there are also isolated edge-artifacts that have one dimension that is larger
than the regions considered in the first two filters. For removing these vertical and horizontal line-blobs, we
apply two additional filters. The first filter considers a 13× 7 region and excludes the center 7× 3 pixels count
in determining the number of zero pixels, Z13,7, surrounding the edge. If Z13,7 > τ13,7 then all the pixels in



the 7 × 3 are set to zero. Figure 6 (left) shows the 13 × 7 mask used for removing long vertical line-blobs. For
removing horizontal line-blobs a 7×13 mask is considered and the center 3×7 region is excluded. If the number
of zeros, Z7,13 > τ7,13, then all the pixels in the 3 × 7 region are set to zero. Figure 6 (right) shows the 7 × 13
mask used for removing long horizontal line-blobs.

X X X

X X X

X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X

Figure 6: (left) 13× 7 region with a 7× 3 blob region; (right) 7× 13 region with a 3× 7 blob region.

Figure 7 shows a close-up of a region from the image shown in Figure 4 (left) and Figure 8 shows the result of
applying the blob-removal filters. As can be seen in Figure 8, most of the isolated edges are removed by using
these four blob-removal filters in cascade. We will assume that the objects that pose a hazard to safe landing of
an aircraft are have a projection that is greater than 13× 13 pixels. These objects are left unaffected from this
filtering method and can easily be detected and judged by the pilot if they are hazardous or not to the aircraft.

2.6. Outlining runway edges

The output edge-image consists of long continuous edges along with other information that is not useful for
detecting the runway edges. We assume that the runway edges are the longest edges in the edge-image and that
edges smaller than a particular length are not of interest in finding hazards on the runway. The clear candidate
for detection continuous edges that have a minimum length is the Hough transform which has been shown to
eliminate edges that are smaller than a particular size.9 Hough transform10, 11 is very useful for detecting these
long runway edges because it is not too sensitive to imperfect data or noise. Each pixel point in the image
corresponds to a sinusoidal curve in the parameter space. Points lying on the same line form sinusoidal curves

Figure 7: Part of the thresholded image is considered to view the blobs occurring on the path.



Figure 8: The blobs are eliminated to an extent by using the filtering process.

in the parameter space intersecting at the same point. The coordinates of the point of intersection define the
parameters of the line in the Cartesian space. A straight line is represented in the polar form by the equation 13.

r = x1 cos(θ) + x2 sin(θ) (13)

A line is transformed to a point using this formula. Hough space makes use of an accumulator array C. The
angle parameter θ takes values in the range ±90◦ and ρ takes the values in the range 0–

√
MN , where M is

the number of rows, and N is the number of columns in the image. Each pixel of the image is mapped into
a set of points in the accumulator array C. Each cell in the accumulator array corresponds to a straight line
with a particular orientation and intercept. The number of points in each cell of is an indication of the length
of the corresponding straight edge. The accumulator array thus provides a histogram in the polar-space of the
number of points that belong to lines of different orientations and intercepts. This allows us to eliminate all
those lines that have fewer than a minimum number of points. An inverse mapping from the Hough to the
image domain then allows us to draw the “significant” edges in the image. The results of implementing Hough
transform as shown in the Figure 10. The image shows the significant edges of Figure 9 highlighted in bold.
As stated earlier, the long continuous edges retrieved this allow us to demarcate the boundaries of the runway
clearly, making the task of detecting hazards on the runway easier.

Figure 9: Part of the image where the road can be seen clearly.

3. COMPARISON OF DIFFERENT EDGE DETECTORS

Performance of the new edge detector is evaluated by comparing it with several conventional operators like
Roberts, Prewitt, Sobel12 and Canny.13 Sobel, Roberts and Prewitt are matrix-area gradient operations that
determine the level of variance between the center and its neighboring pixels. The edge-detection operator is



Figure 10: Result of applying Hough transform.

calculated by forming a matrix centered on a pixel chosen as the center of the matrix area. If the value of this
matrix, area is above a given threshold then the middle pixel is classified as an edge otherwise as a non-edge.
The Canny operator finds edges by minimizing the error rate, marking edges as closely as possible to the actual
edges to maximize localization and marking edges only once when a single edge exists for minimal response.
The response of the operators and the new edge detector are shown in Figure 11.

4. CONCLUSIONS

In this paper we have presented a new edge detection method which shows much promise in the field of runway
detection. This technique helps in better vision of the runway path as it removes unwanted spurious noise by
filtering. The amount of information required by the pilot for processing has also been decreased. This method
is compared with other edge detectors and the performance of it is better compared to other operators in terms
of computational time and the number of edges wanted in this particular application. Computational time
plays a very major role in this application as timely view of the hazardous objects helps in stopping from any
damage to the aircraft. Moreover the threshold is set to an automated value which is a must as each time the
user need not have to enter it. This makes the whole system as automated. The output image is classified as
runway region and non-runway region which helps in detecting any objects present on the runway path.
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